首页> 外文OA文献 >Wavelet Frame Based Image Restoration Using Sparsity, Nonlocal and Support Prior of Frame Coefficients
【2h】

Wavelet Frame Based Image Restoration Using Sparsity, Nonlocal and Support Prior of Frame Coefficients

机译:基于小波框架的稀疏,非局部和非局部图像恢复   支持帧系数之前

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The wavelet frame systems have been widely investigated and applied for imagerestoration and many other image processing problems over the past decades,attributing to their good capability of sparsely approximating piece-wisesmooth functions such as images. Most wavelet frame based models exploit the$l_1$ norm of frame coefficients for a sparsity constraint in the past. Theauthors in \cite{ZhangY2013, Dong2013} proposed an $l_0$ minimization model,where the $l_0$ norm of wavelet frame coefficients is penalized instead, andhave demonstrated that significant improvements can be achieved compared to thecommonly used $l_1$ minimization model. Very recently, the authors in\cite{Chen2015} proposed $l_0$-$l_2$ minimization model, where the nonlocalprior of frame coefficients is incorporated. This model proved to outperformthe single $l_0$ minimization based model in terms of better recovered imagequality. In this paper, we propose a truncated $l_0$-$l_2$ minimization modelwhich combines sparsity, nonlocal and support prior of the frame coefficients.The extensive experiments have shown that the recovery results from theproposed regularization method performs better than existing state-of-the-artwavelet frame based methods, in terms of edge enhancement and texturepreserving performance.
机译:在过去的几十年中,小波框架系统已被广泛研究并应用于图像复原和许多其他图像处理问题,这归因于它们的稀疏近似逐段平滑函数(例如图像)的良好能力。过去,大多数基于小波帧的模型都将帧系数的$ l_1 $范式用于稀疏性约束。 \ cite {ZhangY2013,Dong2013}的作者提出了一个$ l_0 $最小化模型,其中以小波框架系数的$ l_0 $范数为代价,并且证明了与常用的$ l_1 $最小化模型相比,可以实现显着的改进。最近,作者在\ cite {Chen2015}中提出了$ l_0 $-$ l_2 $最小化模型,其中并入了非局部优先级的帧系数。就更好的恢复图像质量而言,该模型被证明优于单个基于$ l_0 $的模型。在本文中,我们提出了一个截断的$ l_0 $-$ l_2 $最小化模型,该模型将稀疏性,非局部性和支持性结合到帧系数之前。大量实验表明,所提出的正则化方法的恢复结果比现有的状态更好就边缘增强和纹理保留性能而言,基于小波框架的方法。

著录项

  • 作者

    He, Liangtian; Wang, Yilun;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号